(/ X$ET+COMPACT_MANIFEST 000644 004073 0 013474 0 ustar 00root wheel {"name":"R-glmnet-single-standard","origin:version":"4.1.8","comment":"Generalized Linear Models for Lasso, etc","maintainer":"CRAN Automaton [cran@ironwolf.systems]","www":"https://.ford.edu","abi":"MidnightBSD:3:amd64","arch":"mbsd:3:x86:prefix":"/raven","flatsize":2473652,"licenselogic":"","desc":" and Elastic-Net Regular\n\nExtremely efficient procedurefitting the entire lor enet\nration pathlregression, logisticmultinomial m, PoissonCox,ple-response\nGaussian,the groupe; see <doi:/>9.i05. There are two new and\nimportant additions family argument can be a GLMobject, which\nopensdoor to any programmed(106). This comes with ast\ncomputal cost, so whenbuilt-inies suffice, they should be\nused insteadother novelty irelax opt refits each of\nthe active sets iunpenalgorithm uses cyclical\ncoordinate descent in a-wise fashasribpers\ncited.ps":{"R-foreach:{1.5.2"},"R-shape4.6.1RcppRcpp0.12Eigen0.3.4.0.0primary4nls},"categories":["cran"],"shlibs_required":["libquadmath.so.0","libR.so.4.4gcc_s.so.1stdc++.so.6fortran.so.5"],"annoFreeBSD_300005"}} +172320,"file/lib/R/library/CITATION":"1$d3002a0bad78c8e79d46a9747a88da1a06cc3e981b2e7807441af6fb87a0372e",DESCRIP67a51d92b1e767ff741cf617ae387432050186e2ccbfee53b9c3090a27ee8e8INDEX7aeffab21140ef70fdef44e5745f55834c819ee6f2fed4ad422eb8edf7bd0271Meta/Rd.rds3096c750d3d12fae0f57bfe891d0d042a072945da13af5bc8812fec26c8a488adata16c54c3e30fce9f1f3b36f627ae549449ffd6a26d15897d36c0b0053d79680efeatures8ed1ef7d0b0583fa32db9b0fbeded65c8816c2744aa706fec3ae9f6734a1d93bhsearch085085ef4d42afa105234efdbe5ee1ace956b05743aba2b36bcbb7f183763130link775a4fe387a71df3c7e9b467aab00173ede49605c36bfa37863c3930fe1c8251nsInfoeff785c161d5fc197cb7d43e36775457621e716be6944006684d1a69f23ece52package61a8dd3fb7d15c0deccebb19645320d7485ef7b8f74dbb47f153e4620c0bd711vignett014542c153141c0056d286eb67a79329a51cdc89bcc14a88ba699a8f3000f22cNAMESPACEb842862c5c62e72d54df473feb4616ab6d36635e0003a4ec96a0182ecbfeb6baEWS.md429ba1a703def39866b62d1db8c87749968e15362e30e6edd4b6ef85e15f327R570ca456b280cdeb201ef5ebdf22dc8f80092e2c0c68e33c7f73340e420f3759.rdb490e27f6ea73d7c95e48874c6aa255a694bc7418b6a5cb692cc691e35880000x0b618563629eaa7bd42e94c655b9af10e5c1aaa5c795655a0e5913380baf0caddata/BExample.rda94de91778326c9a84bba05f1ec869284ee5c9dbbfdc351e57ead5d80ff64e088CVXResults.RDatf9ef3cf76777e3eeaa6d8207b391f3dbd83894d0b8795af403015e138aa6f71dox55daf4ec3a23528268d4582e1640e87b61d22291a26a52dafc1833b64d7074acMultifa9bd59681f21e4c2d73479c9ee74d092eded36c5a510b0668f43ff7f66363c213ce6621e89a22c840b01141a818a88e0b10caf005befad85132135a3ecbd291cea89589ccb1597f722a3c5a6d75c6406caaf941941a50ed86deee73858ec724QuickStarta36e6eb26d57aea1b98624f6894c22e5f9a5ea85f09445a7e599f47d16c1f11Sparse8545df7799ce0c9287639f09281c685efcae86530dee4da5ea212ab7eoc/Coxnet.Rc5503c76061ce05ceb3d4bc506afd335b00dc3dca8ffac6f10548803005779448de4e353fd45babbd78f1b0e4fae129927d904b8be066064c9fd1284a0f2f3cpdfac765878b086252436e13bd001606505bae29f2de6199e1d403e95d32210043f9dabe853148e52e5033731b4327240397eac81d8a67422b946da44a585ee516d863636d7c721db6a1db428e105c4580299d3f9dfb8ec88db797e7583a4815463704b19a419284194d9ee6984ba1793d824771a8a750f4585bf71c7ccc41Fb2750d7a22d06ef650035aa9cfadc9d0b0035e8d9e89e335548e1d41b8b98f4a564bed4970fb1cd28925a8523ef5cce5391657ce1590b0d7ecb5464fdd7fa19d6807d9549eee4eadfe7f2a00b1f1d6655ef58989321429a6d3678da5162b9a5index.htmlfcf7fac0480985555c4b0adf3fe9848ab2eaf0e2daf7c434c04b7722605b8239ebbcaa8f7c3372fdaffeb447754e0798d6778dd6662d61cf22e2568c25955536c2af44e72d17f5823465144383aabcce3aceff77dbc50ce3c9e40a67fb1a15a6d3b0e8aad319a37548c577bf9635d3cac0589a3a76e8789b2ahelp/AnInde323cf889269d518e1094f897b6cc8a13bd898f8b0ada66cd3ebaadcf76ealias741dea6b62b5b428d13dd02d8d7cdda9adac97a6e8cfe8569b2f48f20b86609afigures/logo.png130769e9f1ca21cb286e02e58aeb5d7b1f2a8a0e7b46dc6f6e92f85a81cd5ccb8cf5e30b9fbeb005b026cd6762453afbef78ecb760ca4651739e3d09cab9x3cc4917655b01f51ea543a2e582b7fff472ce9451c42eef6e35fb4ff614f29ffpath6e136ed7a006f31ecff59a88aabc88fcd953f7a5d48bc1a38854bbb0c08ea7html/00I40c5c602fd199fee1c09cad9e4dc2a1055c0a34a72a6e7f00a572d38b2libsso82ba97a724ff87e700f11e887b9b96e6e2696bdebacddf87e189fdf0cbc2231m/READMEa7c945dc90c6f7e536b92bd28bae21bd0b29557d54a5575df9d77d1cfcf2225c5dpclean.md1dc646bd0c43f683fb6b34d74d88bd0304f5ca8c69a5b40223413b32d91d72testscripts/save_r9d5a750769bc0566e81bcfcb6fce98092c9a6f824293803a97f0757f448fea"}} 3571 14614211766 017423bibentry(bibtype = "Article",
title = "RPathvia CDauthorc(person(given = "Jerome",= "Friedman"),
RobertTibshiraniTrevorHastie")journal= "Jof Statal Softwaryear 2010volume33number1pages --22doiheadTo cite in public use:"
)
Cox's ProporHazardsNoahSimo19513If id, please als Allc("J.", "Kenneth")ay", email = "kjytay@BalasubramanianNarasimhnarash2310631Ifglm 41451765P:
Type:
Title
V: 4.1-8
Date: 2023-08-19
As@R:, role=c("aut , "cre")Rob",,Junyang", "QictbJames", "Y)
Depends: R (>= 3.6.0), Matrix1.0-6)
Is: methods, utils, , , survival, Rcpp
Suggests: knitr, lars, testthat, xfun, rmarkdown
SRments: C++17
De <><> <> d.
L: GPL-2
VBuilder
Encoding: UTF-8
URL:
RoxygenNote: 7.2.3
LinkingTo: NeedsCompil: yes
d20 00:30:42 UTC; : [aut],
, creRob TayNoah Qian [ctbames Yang
M:<>
Repository: CRAN/P2 03:10:09
Built: R ; x86_64--3; 2024-04-30 15:53:21unix 0047047 Synthetic datasetbinary
C e C for a
right-censoreds
count s design m
assess. performance of a '' usingtest.
beta_CVXSimulated
bigGlm fit a glmll
coef act cos fromnet
cox.fitFCox net valulambdas
cox_obj_funcEive
coxgradCgradnet.deviv Cross-validdev
elnetSolve weighted least squares (WLS) problem for
fid Helperand
get_cox__maGetmaxget_etato get etas (predis)startGet null, ing mu
GLM-psome.controlinteparameterFmeasDisplayn CVfor different "makeXconvert arameone-hot e
mycoxphfit survfit.redamend ...newinna.replaceRissing entriecolumnsupplivector
pentylot.ploccurve produced bymake.Get''in aedMakermultesprobabilitstratifySurvAdd aa uCheck icall
_mean_smean an 04720234ZsG?[%lWTl!@(sB]vN;'0==;=gY%Bkz{~`e
`LJGO
'M(e!XH?o #yޑzY5J Vv{
B)պF/kVUwL)p%[^`g'bz-a3É4eӖtHcyxҔi-dIZ>PCXϭtqz{Xa7qDܛz=YqqLnj&%0)J