(/ X+COMPACT_MANIFEST 000644 003417 0 013475 0 ustar 00root wheel {"name":"R-sandwich-single-standard","origin:version":"3.1.0","comment":"Robust Covariance Matrix Estimators","maintainer":"CRAN Auton [cran@ironwolf.systems]","www":"https://.R-Forge.R-project.org/","abi":"MidnightBSD:3:amd64","arch":"mbsd:3:x86:prefix":"/raven","flatsize":1784697,"licenselogic":"","des \n\nObject-oriented software for model-rcme.\nStarting out from the basic Eicker-Huber-White \nmethods include: heteroscedasticity-consistent (HC)s for\ncross-section data; and autocorrelation\n(HA time series (such as Andrews' kernel HAC,\nNewey-West,WEAVE); clustered(one-way and\nmulti-way); panel-ct;\nouter-product-of-gradients() bootstrap\n. All are applicable to (generalized) linea\nos fitted by lm()gbut can also be adapted to other classes\nthrough S3. Detailsbe found in Zeileis et al. (2020) <doi:/>,(200411.i1066.i09.ps":{"R-zoo:{zoo1.8.12"},"R-primary4.4.0nls},"categories":["cran"],"annotFreeBSD_00005"}} +161312324,"file/lib/R/library/CITATION":"1$be936cafe8e5e617f5695b72281c7bef03d24d162a684176c717c5bb102c2f9a",DESCRIP1392dec324c77701ef60d1237e7d5bf0d3bffaa551c4fa935c8c016017ea9c1fINDEX27a170a9b1ede5004e6e9cdcbd96c5a62e6990ffb0188542d1e38cebc00f9744Meta/Rd.rds9669d3ec81ab0657a9f5290a9f90c871da363f525add33518b451e1264f8b822datacb48ccf9bed7aab4752ddf1c600087764f2b5b08eb2677350c5e88188983e1dbfeatures8ed1ef7d0b0583fa32db9b0fbeded65c8816c2744aa706fec3ae9f6734a1d93hsearcheaa9f4c5c93b6b29087ebde00184b85bcf37aa9fe3bfc3b183c4257248955cf9link2780cd7e1db838d00b2f87aa48285cd06e176688d502a66cdf997851019aee0ansInfod473d7a96539745cc601ee1ba9332128cc8a53dec126b3c46a4d08b55f1bc8fpackage3c7f4a5b940274947be76ae67aba17c21410024465e1c7099fb3e49e8aa8d6vignettc133d7b5ace4ab7f77e7ed310e1e7d62ec65fb9a503d253a18fd95af5a6NAMESPACE59de6cfe30a87b325fbd44584979df5f9a050cf45902883fa64956845df649dNEWS.mdf618c001c32078e5c5a7e42be9f2669c72e483ffbf651b82d20d8e699c227d47R570ca456b280cdeb201ef5ebdf22dc8f80092e2c0c68e33c7f73340e420f3759.rdb177f18a40c2b4dce0d3ed9de88c7d3b3ba4881705375e2cb1db922e580fbccxc5b7965a9974af98a04f530bb3476a8dfa9dd0de03988e3d5372a4b26af4ab91data/InstInnov.rdadd34751be33f4d7688c7072048eb0c46f5946115a0627bc358a348d8db15dvestment3baae1aaaa7bac4cac08ca1d55f103f5e22e7d3c9509bd1d76dd55106780bfe0PetersenCL1a766cab43effcce21782be9c4a170e1798e76e41caebcd6d646a11958d4719ublicSchools2ae40eda52847a1b365dba1824fb2237cd281add455b6f90ebf49cfca1577aoc/index.html4ee9f18b9bb633e1ef5b9f0013161248734aa6a089ce1531304cc1e51c2452-CL.R58558dbe2dcf8666cdbf206bded0a041dbad7e558190a76c47466cc10d014ecnw002d7103c7086123e49265ad091099dc80c0215e795ce7558cc6982fc68c3e7dpdf7f094bb2fb12227595bc68f778195df1e29a3a09ac913dc3d20c9cba2e2af5beOOPab42b25a7207a711d544eaae798ae546da493b7bddb79a1ea20379a19bc4adf21dd14d5b60848fc15d40d3034da97991a4e4c25ec44c4a2bfc8987f3ad17a5ef00404bc81243cf76925d203ff1e5e87e50c9075e3e0a1d6362af0fd81246acc49e77b327f3605a38b4e411821302f854f67c04dc3cd77b1811cb822d14811b5e69b13132b6fb0ea32317e4ab420bcd7f3c0623c7474cf1464291585732b36b3cfd76af3ff3517c703a8a2d173849664240117a79a79f5494d1dcc1992fa01c43imbf83bd71575c542596249b6c075daab9e069bb21f644f3c4a8b89545589c6f4f223c8c7288e751f9f048704e665740a9dce9db0c35995ae527f1f76ahelp/AnIndea5a03d04a93a6a3af047d972b012f48a43d5f8ca9ce81b3b6420c53ffa96e4a5alias54b2aedcc9ab4d3c8adcf77cf1da38ac6435bd7376c6038b5e2ad171dad58e9figures/README.svgcbabe0c036558fcbcf0f5cafb5e1e285b462fabca60ac2ff6816e82a7f809438path039b4e32165e7afd365b5b1d3ab139d80fd5e109433aa795b58a4f606251ff2df7abc419e207cb226fd56d6f0349a1d81876c41faf79ec1b4cfd554d00a41c13x5bd5a20894730973ae2e35ab6c7d41200c5036aa72abcd7e46e00de279776287tml/00I12541b7bfee8859a83852f5091f864d6d17d8a63b3d27ec3de9b051e1f635a8tests/Examples-Ex.Rout.savec4305ae6d9e7bae9a7fbc46add90f388acfb1f47749009e7f9df5ec45ba7268vcovf6112b89a0ab952106eaab12be2579a9d5225f921b8ec39a6b47479485bc33aca06c9cb47f26f8a02b8b0082cd907ee4e0ab4463e08205bd9e4cbe4839f6a2c9PC28d36340d5cbf086d03d62517e53d24bf3939d0247c1c69e58f7306cc63b7cPC621912f1e7ac31faa89f63b1874bbf455fdcd65fc98883a633ec5d194544c5L937ec8597e0b579a7469b722d16160af572b136f59f603c49f9d7330b3619bec29884f7464c2488ca0088d5428990332c0161d22f2e6dfbe2762f477c13ef 621 14614155076 017732bibentry("Article",
title= "Various Versatile V: An OImplemen of CCin {R}authorc(person(given = "Achim", family = "email.@",
ORCID = "0000-0003-0918-3766"))SusanneK\\\"oll"),
NathanielGrahamnpg1@.comjournal= "Jof Statistical Syear= "2020",
volume95number1pages --36doi
head= "To cin p use:"
)
Econometric Compuwith {HC}{HAC}0411017Ifss, pleasecitS6696",
than 446420311P:
V: 3.1-0
Date: 2023-12-10
Title
As@R: role"aut", "cre"),ThomasLumleyt.l@auckland.ac.nz4255-5437 ctbgmail92-1215-5256oell))
Descript <><><>.
Depends: R (>= 3.0.0)
Imports: stats, utils, zoo
Suggests: AER, car, geepack, lattice, lme4, lmtMASS,wayvcovparallel, pcse, plm, pscl, scatterplot3d,4, strucchangesurvival
L: GPL-2 |3
URL:
BugRecontact
NeedsCompi: no
d1 08:49:01 UTC; z: [aut, cre] ( [ctb
M<>
Repository: CRAN13:50:02
Built: R ; ; 2024-04-30 11:47:10unix 1510135 and Institutional Ownership
US Data
Wes HACion
's SimulatedAssessingS Errors
US Expendi
bread Bfores
estfunExtract Empirng Funs
isoacfIsotonic
kweightsKW
lrvLong-Run ofMean
meat A Simplt
Makingand
vcovBS () BvcovHACH-JKJackknifeOPGOPGPPCP for-basededAdaptiv 234520531W]o6ZMaoZlÆ98P'k_i K@QveW")hC1ὗ^WvyZ݆Nf:NG ϳ1|rlB1 DoB8_
{aayt/8FA9Byj,% CVLKa radK
6_Q>[O+Ix7Ni8;\y*&^3yv3cSj"B|vv42Kz"EڤO139
lQ'2-z$s юy6ԠB<02 樠7'Oٹi
e}[l}Kk>,KݬZH1
ݫ
XXY|3uqAodB>QHpr!pdP;%Q"<;g& NB(Lɩ subV sV]X?9Ί5"zp|+8;bהIJb0(0L8*jK]KSoMJ_Ll%v|9(*:2}tDa!wCҕ[rzY_bt 9n2
Oܲ9JU(J ,(Mb{`iR%sǫgA^qX7i-(fRLxYYxXd
f(;YPabAָW=
7'ܣy&<ߤGsڳ5+gfc^
\bLF' Q7H3 W5Njz6^ڎTD'xz_˔!bJ78݄C2
ق͉br{2j{8