(/ Xg
+COMPACT_MANIFEST 000644 003766 0 013504 0 ustar 00root wheel {"name":"R-tsfeatures-single-standard","origin:version":"1.1.1","comment":"Time Series F Extraction","maintainer":"CRAN Automaton [cran@ironwolf.systems]","www":"https://pkg.robjhyndman.com//","abi":"MidnightBSD:3:amd64","arch":"mbsd:3:x86:prefix":"/raven","flatsize":359628,"licenselogic":"","desc":" \n\nMethods for eng various from time sdata. The\nprovided are thoseH, Wang and Laptev (2013) <doi:/>, Kang, and\nSmith-Miles7016j.ijforecast.2016.09.0016/from\nFulcher, LittleJon398rsif.2013.004898/.s include spectral\nentropy, autocorrelations, measof the strength of seasonalitytrend,so on. Users can also define their own funs.ps":{"R-fracdiff:{5.3"},"R-8.22.0purrr0.2RcppRoll0.3tibble3.2.110.55urcaurca3utur1.33ff0.3primary4.4nls},"categories":["cran"],"annot":{"FreeBSD_00005"}} +13323232,"file/lib/R/libraryDESCRIPTION":"1$ce33dc7703c52e305d2204868bbf18efdf10dec40cf2a531879090a6545b3ec8",INDEX1e7691d4cf557ed01e05a2fed29579adcacf5aee436f5f392740ef90e9dfe81Meta/Rd.rds2c41d26ca70b0fcae0402f14ffaf48909be83a31179d0753b93594287e5d84908ed1ef7d0b0583fa32db9b0fbeded65c8816c2744aa706fec3ae9f6734a1d93bhsearch6e86689541fa8b67bb496806edb1b561ebe2176ad80a0d607475822ade141c71link0469fcc6f9b47d3bd180915f33a9e4625c1319d6d8b5cee50b4b3b425d947844nsInfo32416e5bb6e053696ddb96a37291ec5abcb2c310c158ebe514c0da7c2c3018e8package10fbc52323e28ea73672b0367cb601f2062f693a445c50cb97e5046cf86ab51fvignett32635e85fc6e2bdf3aa673ee98bbd3a59984d8fcc275dab4657e82a3c35d0bccNAMESPACE58a87db2e3d9cf0490823250fecc4c6b308c2bcdd6d0b59846ccb38f8fe91cc2EWS.md42cb90cd47b85236f03c87e064c57248328364dde5c814d5ef5cc8e9b076ffcbR70ca456b280cdeb201ef5ebdf22dc8f80092e2c0c68e33c7f73340e420f3759.rdbdc9914733988fa53feb83c694ef62e5938a994f1ee1d6daa92359dc8b47ae61dx000351a80a63278051f5074d803db7b4e87b358d87250b6f064f410c85doc/index.htmlbd6dd59b74d54a87ee7431566f3e197ebeb89f6a780a761a391274e401a8660R15886b90163772d2abc23be37c21b744ffa947a4e2adf1d0327868f51d29729a4b85f8a593837bcb3b0ccaa976d4fd1322c84eda2f61d4ae49ffe95b600818fc5e0cdb0e4557c1f693120fca2bb033c1fd2147cfcd68f4556d2ca8d5help/AnIndecf4db128606bb47e0fdabfe22e6f23789df1024a398b7157a8ae292829331828alias0c48383562c4e4460fb105cd5aa89832f28e9071e17735c0817689ca5c6a8ba0path01663a4a078edcc76da62b0420077d06992a9d135516fccded0b5ffec3e9dc10a46355658ed521c6f23281ae609da6be39d3cb610a2a6b3cab19dfa3af61b04x9dfd363676a250715690a9b83ada175b5e76450b957ec874d82ca5480d3d0chtml/00I99d944bd9a9a730eb848ca7e755a05e702b703a24cd6cc6cb437b9d853cc6b03testthat5bfa8646caaf958409a4433dc5ba7dfa5f44c25fab132438e8bd94a1e56f53c0-acf_8ab5563df921550842fb70e2d0144f56299ec46f87496943e127078c4645a954compenginef61af0fc5e3f8ad16a4580fe33e5ea4f8bc3691c6f40402a43678e6744b733fdholt_parameter582851e4534a9d015f4ec505f3364c246bd6e66b55fca225f77c76bc8a64a38epef56f4aab57f15c4cdeb139b6380909b292860cb51694ea6f7130db43b9c85stlbc3a3be985307c01c25bfc83d236c359088edf88fee0e7fe28c743de8bfzero_proportiondace9b10f7a93d97514880a54ecfec1429aa0fcc675ca1f98271e5f84a206cb3 5224 14614154770 020671P:
Title
V:
Authors@R: c(
person("Rob", "", email = "Rob.@monash.edu", role = c("aut","cre"), ORCID = "0000-0002-2140-5352")),Yanfei", "Kang1-8769-6650Pablo", "Montero-Manso="p.m.m@udc.es=Mitchell", "O'Hara-Wild=6729-7695Thiyanga", "Talagala2-0656-9789EarW448-5260YangzhuorFin.YangSouhaiBen TaiebctbCaHanqi=D KLakeNikolayptevJ RorBohZh)
Descript <> <> <>
Depends: R (>= 3.6.0)
Imports: , 8.3), , 0.2.2 stats, , , urca, ,
Suggests: , knitr, rmarkdown, ggplot2, tidyr, dplyr, McompGGally
L: GPL-3
ByteCompile: true
URL: github
BugRe/issues
RoxygenNote: 7.2.3
VBuilder:
Encoding: UTF-8
Needs: no
d: 2023-08-28 13:23:56 UTC; : Rob[aut, cre] ( ,
Earo [ctbCao D K LakeJ R
M<>
Repository: CRAN
Date/Public4:00:02
Built: R ; ; 2024-04-30 11:46:00unix
73773 017773ac_9 A at lag 9. Id for
complend consistency.
-based
arch_stat ARCH LM Statistic
as.list.mt Convert mts object to list
Thesetsoftware 'hctsa'
binarize_means an input vector into a dCompE
crossing_poinNumber of
distThe distribuembed2_incirclePinside a given circular boundary in a2-d ding spaceS of afirstmin_acof minimum inzerolat_spo Longest flat spot
fluctanal_r1Implements unalysisheterogeneitHcoefficients
histogram_modModaP estimatHolt's linearm
hurstH
localsimple_taresidualS time-inglumpineson tiled windows
max_level_shiftsliotiftwo_3Local sy symboliza non N
outlier_mdrmdow median d onal spPartialpredpredicsampen_Second SaEcscalscalpreadrandomtauBootstrapstd1st_derS deviderivative ofheStrev_numNormalized ,numeratortrev matrix
unitroot_kpUnit Root Tests
walker Simula hypothetical moving throughdomainyahoo_Yahoo server metrics
Pofs345321135Yn7B"6@R+m Pԋ&҈
jVyg;nfe#6Ǟz;s^wWk|3=8
uy gIј`U
"[U,4
>j;WΛTsr%Xa'r&En.mzŇu^',5mA([<۰ lO{{T*B֪՚ VT[|ZUPEtZ7д\6dLuUt}rvQh^Cxt5
]Z߷]DX=YuB-lx?;և;u!IFU'huO&g$w'OPTԦ]ΦD(џ$VHq#chN5;N 4ةXI@݄6XIY3**DYQ*4`0N0E7Fl?w홲T~rXB,[WhttTɮ??B܄&tJḛ@#^9lŻ[ 2 ѪH`I g chpGǚ!%4/s-\udZϵ*I̯?lBmH6|9>6]nX}
xLcJD:aT])mn.Α9VDjNO7%rhm)o:Ш+_#LlU)
16ߚrˌBǜYn̨A'FUsUpLu#9G@{/ FAzAcwh\u(CKFu1IRIF.אnZϩfH@FQsw^5Z/lY^4 9 KC0 A00l8@AB`;P
CAC`?pCz=3s>kJZVAh֪|*=hxUO ~#7 ۋ` HUvN%&I%Y*!?}ҏvvw.>˕X@3 fqTV|-"/~s~A߷-m+~?1Uͦ~mej'LVw9IѼD^OX`m >?^
01750 022401b```f`a@&Ghc'0`H%ZY'$%&Y&X300!aKM-F3;3$(/1 q> 2212176Zo5ޤ9Hh`^
\ wiV!MSowk^^$wkI#Ԣ{H3|f˲yW*IUϛk0^֪è%S3L?xߗ{n
+4iVgVزRINj8M'u='wҖFa4a4Ʀش4t¿FeJS]*Ssm\@H9)%FS\H2vyJ͇Jgl-IӀ &YJ'eL|@#!jj(Տ~`PMb%~!IbVHC
9X/-}6aަ
G|g<#-̣ǝz,DKDh0.#F%Ԥ#EB)KnGVviUATYI!`hnA(^*Q;].O?=́$eلC
Ev~82
CHK PSI"OC*06!1\+
LJ(_2H1))
CSu*xh $O\O<
tT`
XÌbѼvF%H964l<Ψd(OCON
H**7,'T3o+R.>ni,?Mf|$N9PaYS2dnX@g0]%ү 9Pz~s ~>0Lca@ iQ
a|r8rNI{;r`eo 6\yzVCJDsXE0n?<%=n185BҢfwl5۪.g)sp9*oŞUA*ŏ>/ B5XM
W}]$-䇮Cx+
~L`7Yg6$EZ^i<__
oOVI=F @ ܿs( rGؘFyh 9RFqIaH
wW;n:of
9>9ޜfoNtI}k6
[\+~P}hbLINޥOg<]^?4Ƽ
_sb