(/ X+COMPACT_MANIFEST 000644 003342 0 013472 0 ustar 00root wheel {"name":"R-sandwich-single-standard","origin:version":"3.0.2","comment":"Robust Covariance Matrix Estimators","maintainer":"CRAN Auton [cran@ironwolf.systems]","www":"https://.R-Forge.R-project.org/","abi":"Linux:2.6.32:amd64","arch":"lx86:prefix":"/raven","flatsize":1725514,"licenselogic":"","des \n\nObject-oriented software for model-rcme.\nStarting out from the basic Eicker-Huber-White \nmethods include: heteroscedasticity-consistent (HC)s for\ncross-section data; and autocorrelation\n(HA time series (such as Andrews' kernel HAC,\nNewey-West,WEAVE); clustered(one-way and\nmulti-way); panel-ct;\nouter-product-of-gradients() bootstrap\n. All are applicable to (generalized) linea\nos fitted by lm()gbut can also be adapted to other classes\nthrough S3. Detailsbe found in Zeileis et al. (2020) <doi:/>,(200411.i1066.i09.ps":{"R-zoo:{zoo1.8.12"},"R-primary4.3.1nls},"categories":["cran"]} +160542330,"file/lib/R/library/CITATION":"1$be936cafe8e5e617f5695b72281c7bef03d24d162a684176c717c5bb102c2f9a",DESCRIPe696d3d0eb1ca64fcee442a23d055803d3a6240a4e1c9adb22b19703a35d10a6INDEX2aa4251f8bb1e4ed66290209e941622e4d45636a23da9c538ba5cf472e182f38Meta/Rd.rds678afa095305d66b40d60c3a4f6766ab47665c6b61b4f6a48de915b783bd7e02dataca84801c38a8ec4b9ad50ca9b23379cb4bd69c2aa3c37099800d318cde11a5bfeatures8802ec1faae0365bf8c361b54fbe4f3b344c5867b0e5154240fc7116dcahsearch2cff7d65489ef60deda312886927c62568537cd9cadc64961cf2ca2d4bd981c6link6c180c224d1464d913d1e7d79ad86eb0cb0da60038ebbf4257e8d3c0a9188b8nsInfoc508cf2a249bba8a2f03704532097d4f1fcc36996fd56e91f999a9a368476d2bpackaged3b00088699d0b619d7d4feb5c37a79af261f977201d77f4ddb4765bc97ada55vignetta0b5c62bac8521a16a48856ef3d9964b5dfe07d8461f3a8bab2bb24ebca99a72NAMESPACEdf386d5d1a4f6805167036111a2fc9471840e0aee848fefd730c85606e457eeNEWS.mdd8f46d8858971d78e82797e43ede038864e334e60ed92a6a97060cc1fafaR570ca456b280cdeb201ef5ebdf22dc8f80092e2c0c68e33c7f73340e420f3759.rdba791968d229590b311e82a831c083e664ed9d324561a76acb62658d65deebe8xa70c2114cfc51ef481fbd24ae8c455b42b084990094b79c64e173e49c7755data/InstInnov.rda1dd34751be33f4d7688c7072048eb0c46f5946115a0627bc358a348d8db15dvestment3baae1aaaa7bac4cac08ca1d55f103f5e22e7d3c9509bd1d76dd55106780bfe0PetersenCL1a766cab43effcce21782be9c4a170e1798e76e41caebcd6d646a11958d4719ublicSchools2ae40eda52847a1b365dba1824fb2237cd281add455b6f90ebf49cfca1577a91oc/index.html4ee9f18b9bb633e1ef5b9f0013161248734aa6a089ce1531304cc1e51c2452-CL.R04173aa114e3e5662d99ed641d8d5dec3bd4bec4d44dcb9fb90cfda0dbf80f0fnwf24fc3b10c4b008b1b33c2b59635a300d78662f9f1383cbf42e8b078615876ccpdf3a765482a629c8c9369020d13632ec5c37520df17e22266eb9e2928270e94bbOOPab42b25a7207a711d544eaae798ae546da493b7bddb79a1ea20379a19bc4adf21dd14d5b60848fc15d40d3034da97991a4e4c25ec44c4a2bfc8987f3ad17a5ef04599c650db0c916bfe21c3c7c66e3547ef0f1d5be908c3b4759a313a026a1e49e77b327f3605a38b4e411821302f854f67c04dc3cd77b1811cb822d14811b5e69b13132b6fb0ea32317e4ab420bcd7f3c0623c7474cf1464291585732b36b3cab762c22ff2d6b0c26e6e642171f116a11ec4dcfe58821148bdf41856f293a1bimbf1575c542596249b6c075daab9e069bb21f644f3c4a8b895455839c6f4f223c8c7288e751f9f048704e665740a9dce9db0c35995ae527f1f76ahelp/AnInde9faedea94810bc85fd111d97054a5fefe195f95be1ddc3d49f495e0be84c6037aliasa479a376ee361779422cec256a6487bebfd477a28c7b1fa4cf01e70369da58f1figures/README.svgcbabe0c036558fcbcf0f5cafb5e1e285b462fabca60ac2ff6816e82a7f8094pathceb94b7dd5a289488b0b26c15dee64677f3df6a9e1888b5f4fd5913ab8a85125f079ad31dc78bb657e5e81f104223089a5f5df62d74440eca4f0f032ce6c841x7c684f00df2cb78a700552ac32bbec34af7c8c6511845e2f57f85ca65a546bc7tml/00I2cf5bde0b1d53225ce724995ee5228f7b792ce9279e2d1616505e5550895ad4btests/Examples-Ex.Rout.save5bcfe1914d432919c2c0fd79d6b8d0546f46b51851014ed9924024d0aa2d1a5vcov635acc25f13895ed7ae14ca15585058e689bcfa385b7af51a04da123d619dcc2074642205ea8461dd79bf9239eb8af94a6e13bf12a90dc4ba29361dd44480970PC28d36340d5cbf086d03d62517e53d24bf3939d0247c1c69e58f7306cc63b7cPC621912f1e7ac31faa89f63b1874bbf455fdcd65fc98883a633ec5d194544c59dLe4079bd3cdca4b3291e0c5cdd627a693edb66c8b26691c74cafc089fd9419afLd18b3d6c2a5d0445d493ee84ff38a19820fc58e526c4a23acc7e527b172da467"} 621 14473534137 017734bibentry("Article",
title= "Various Versatile V: An OImplement of CCin {R}authorc(person(given = "Achim", family = "email.@",
ORCID = "0000-0003-0918-3766"))SusanneK\\\"oll"),
NathanielGrahamnpg1@.comjournal= "Jof Statistical Syear= "2020",
volume95number1pages --36doi
head= "To cin ps use:"
)
Econometric Compuwith {HC}{HAC}0411017Ifss, pleasecitS6696",
than 423420306P:
V: 3.0-2
Date: 2022-06-13
Title
As@R: role"aut", "cre"), ThomasLumleyt.l@auckland.ac.nz"),
ctbgmailoell))
Descript <><><>.
Depends: R (>= 3.0.0)
Imports: stats, utils, zoo
Suggests: AER, car, geepack, lattice, lme4, lmtMASS,wayvcovparallel, pcse, plm, pscl, scatterplot3d,4, strucchangesurvival
L: GPL-2 |3
URL:
BugRecontact
NeedsCompi: no
d4 00:56:06 UTC; z: [aut, cre] ( ],
[ctb
M<>
Repository: CRAN5 07:10:05
Built: R ; ; 2023-08-30 03:32:47unix 00645365 and Institutional Ownership
US Data
Wes HACion
's SimulatedAssessingS Errors
US Expendi
bread Bfores
estfunExtract Empirng Funs
isoacfIsotonic
kweightsKW
lrvLong-Run ofMean
meat A Simplt
Makingand
vcovBS () BvcovHACH-OPGOPGPPCP for-basededAdaptiv 23102053W[s4ζ6ilGew a/!v̦{yc[I4%,
O_ؒ, xHm}ssdۭj۵v^kw~A&A^k)M)la*P)]DD
_/n)K1 >)^?Ip:a&bD<3 D51
r\vGy[j'e/aN|H_1c&L0
;S|9%ZSK)Nx*MzblaM?a
LOuIˈ{2ռ}$wĘH xj*l}uז%>|"E(U(LOmmU]~LCwY˦M̿!( yb3Bی>ٺ{pueu'(
ח4t?@ l2guoqޓ"/߃]}Jɖ'YN.Ɋt%KS
;.϶i